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Abstract: Antennas are essential in radio engineering, facilitating the transmission and reception of radio signals. This 

paper explores various types of antennas, including dipole, loop, and parabolic antennas, and their applications in 

communication systems. The focus is on the microstrip patch antenna (MPA), valued for its compact size, low cost, and 

minimal profile. The study investigates the use of machine learning techniques to optimize antenna design, evaluating four 

predictive models—Decision Tree (DT), Random Forest (RF), Support Vector Regression (SVR), and Artificial Neural 

Networks (ANN)—through MATLAB simulations. The effectiveness of these models is measured using Mean Squared Error 

(MSE) metrics. Findings highlight the most accurate machine learning approach for optimizing antenna design. 
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I. INTRODUCTION 

An antenna or aerial in radio engineering is a specialized transducer, designed by an array of conductors which are 

connected electrically to the transmitter or receiver. The main function of an antenna is to transmit & receive radio waves 

equally within all horizontal directions Antennas are available in different types and shapes. The small antennas can be 

found on the roof of homes to watch TV and big antennas capture signals from different satellites which are away millions 

of miles. Antennas move vertically & horizontally to capture & transmit the signal.  

We have covered the properties of antennas, and now we will discuss the different types of antennas used for various 

applications. These include dipole antennas, which are commonly used for radio and television broadcasting; loop antennas, 

often employed in direction-finding; and parabolic antennas, which are essential for satellite communications and radar 

systems. Each type of antenna has unique characteristics that make it suitable for specific purposes. 

 

Figure 1 Different Types of Antennas 

A. Rectangular Patch Microstrip Antenna 

Antennas are an essential component of the telecommunications industry. To put it more simply, it is a transducer that 

changes radio signals into electrical energy and electrical energy into radio signals. Wireless communication technology 

enables the transmission and reception of signals among people who live in geographically inaccessible locations so that 

they can communicate with one another. Nowadays, a wide variety of applications make use of the microstrip patch antenna 
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(MPA), which is popular due to its low volume, low cost, and low profile. The performance of the microstrip patch antenna 

can be improved by optimizing its design for a number of different factors. 

 

Figure 2 Microstrip patch antenna [3] 

 

Figure 3 Design Parameters performance of a rectangular patch microstrip antenna 

B. Challenges in Antenna Dimensioning 

Challenges in antenna dimensioning are multifaceted, involving technical, physical, and environmental considerations. 

Technically, achieving the desired frequency, gain, and bandwidth while maintaining a compact size is complex. Physical 

constraints such as space limitations and the material properties of the antenna further complicate the design process. 
Environmental factors, including signal interference and the impact of weather conditions, can affect performance and 

necessitate adjustments in dimensioning. Additionally, the integration of antennas into devices requires careful balancing 

to avoid compromising the functionality of other components. Addressing these challenges requires innovative engineering 

solutions, rigorous testing, and a thorough understanding of electromagnetic principles. 
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Figure 4 Dimensions for a rectangular patch microstrip antenna Common challenges 

C. Machine Learning in Antenna Design 

Machine learning plays a transformative role in engineering and design, offering powerful tools for optimizing complex 

systems. In antenna design, machine learning can streamline the process of determining optimal dimensions by analysing 

vast amounts of data and identifying patterns that traditional methods might overlook. This approach significantly reduces 

the time and effort required for trial-and-error testing. Advantages of using machine learning for antenna dimensioning 

include enhanced accuracy in predicting performance outcomes, the ability to handle multifaceted design constraints, and 

improved efficiency in achieving the best possible antenna characteristics, ultimately leading to more innovative and 

effective designs. Machines are increasingly acquiring human-like abilities such as problem-solving, decision-making, and 

learning. Machine learning (ML) automates analytical model building through data analysis, while deep learning (DL), a 

subset of ML, helps machines process data to mimic human behavior. ML and DL optimize antenna performance, making 

design processes more efficient and rapid. These technologies have become pivotal in recent research, enhancing various 

antenna design fields like millimeter wave, body-centric, terahertz, satellite, UAV, GPS, and textile antennas. For instance, 
body-centric antennas support wearable communication devices, terahertz frequencies aid in spectroscopy, and satellite 

antennas facilitate global communication [4]. Over the past few decades, antennas and their systems have rapidly advanced 

due to significant changes in their geometric and material profiles to meet modern applications like body-centric 

communications and multiband operations for 2G/3G/4G/5G [5-6]. Typically, antenna design follows established 

guidelines based on design experience. 

II. LITERATURE REVIEW 

Kurniawati, N., et al. (2021) [25] This study focuses on optimizing the design of rectangular patch microstrip antennas 

by incorporating machine learning techniques. Traditionally, antenna design relies on trial-and-error methods to meet 

desired parameters, but this research applies machine learning to predict antenna dimensions. Using simulation data from 

antennas with various dimensions, four algorithms—Decision Tree, Random Forest, Support Vector Regression (SVR), 

and Artificial Neural Networks (ANN)—were evaluated. Among them, Random Forest with 15 estimators achieved the 
best performance, showing the potential of machine learning to enhance the design process beyond traditional simulation 

software capabilities. 

Sharma, K., & Pandey, G. P. (2020) [26] This paper explores the application of machine learning in designing a compact 

dual-band H-shaped rectangular microstrip antenna operating in two frequency ranges: 0.75–2.20 GHz and 3.0–3.44 GHz. 

The study utilizes an Artificial Neural Network (ANN) model developed from simulation data to predict antenna shape. 

Comparison with a mathematical model showed that the ANN-based approach offered superior prediction accuracy, 

demonstrating the effectiveness of machine learning in antenna design. 
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Y. Sharma, et al. (2022) [27] The article proposes a new machine learning-based optimization technique for complex 

antenna designs, specifically focusing on monopole antennas with spatially dependent dielectric materials. Gaussian 

Process (GP) regression and Artificial Neural Networks (ANN) were used to map dielectric constant values to gain patterns. 

The results were compared with heuristic methods like Genetic Algorithms (GAs), showing that the machine learning 

approach efficiently handled high-dimensional, nonlinear problems and provided accurate optimization results. 

Nakmouche, M. F., et al. (2021) [28] This research develops a high-gain Frequency Selective Surface (FSS) reflector-

backed monopole antenna for 5G applications, utilizing machine learning to determine optimal parameters for the FSS 

reflector and monopole ground dimensions. The study involved simulations and measurements to verify performance in 

the 6 GHz band. The ML-optimized design demonstrated improved size and gain efficiency compared to existing designs, 

showing the effectiveness of integrating FSS with machine learning for enhanced antenna performance. 

Gupta, S. H., et al. (2022) [29] This paper presents a compact microstrip patch antenna used for lung cancer detection. 

The antenna, operating at the ISM band, was tested on phantoms of healthy and cancerous lungs. The study created a 

dataset from various cancer stages and used the Random Forest algorithm to classify and differentiate between healthy and 

cancerous states with high accuracy (93.75%). This highlights the potential of microstrip patch antennas in medical 

diagnostics. 

L. P. Shi, et al. (2021) [30] The study addresses the challenge of time-consuming full-wave simulations for graphene 

reconfigurable reflectarray antennas by proposing a deep learning-based prediction method. Convolutional Neural 

Networks (CNNs) were used to predict electromagnetic responses from discretized input data. The CNN method achieved 

over 99% accuracy and significantly reduced computation time compared to traditional methods, demonstrating its 

efficiency in predicting complex antenna characteristics. 

Pramudita, A. A., et al. (2019) [31] This study investigates the impact of antenna dimensions on the footprint in Ground 
Penetrating Radar (GPR) applications. It examines ultra-wideband (UWB) antennas and their footprint variations based on 

size, finding that antenna dimensions significantly affect detection results. The research proposes a method for controlling 

antenna footprint to adapt to different soil conditions, validated through simulations and experiments. 

D. Mathur, et al. (2014) [32] The paper introduces a method for quickly estimating the dimensions of rectangular 

microstrip antennas (RMSA) based on the concept of “Equivalence of Design.” By relating the classical extension in length 

to the patch dimensions and substrate thickness, the method allows for efficient parameter estimation and design 

transformation. Validation through simulation and measurement demonstrated accurate predictions, highlighting the 

practicality of the proposed estimation approach. 

M. Fallahpour and R. Zoughi (2018) [33] This study explores antenna miniaturization techniques and their effects on 

bandwidth and efficiency. It discusses how reducing antenna size impacts radiation quality and impedance bandwidth, 

while recent investigations aim to minimize antenna size without compromising performance. The research contributes to 

understanding how electrical and physical properties can be adjusted to achieve miniaturized antennas with acceptable 
operational characteristics. 

Alluri, S., & Rangaswamy, N. (2020) [34] The article presents a compact super wideband (SWB) antenna with high 

bandwidth dimension ratio (BDR) for future wireless applications. The antenna features a unique design with a tapered 

microstrip-fed circular ring and elliptical spokes. Experimental results show a SWB from 2.3 to 34.8 GHz and a high BDR, 

demonstrating the antenna's suitability for both civilian and military applications due to its compact size and broad 

bandwidth. 

IV. OBJECTIVES 

 To optimize Antenna Design Using MATLAB as simulation technique by selecting the parameters from (base-paper 

author name, year) 

 To develop four Machine Learning models (DT, Random Forest, SVR, ANN) to evaluate Mean Square Error. 

 To compare the values of MSE with base paper 

 IV METHODOLGY  

Antenna Design and Simulation 

The design and simulation of a rectangular patch microstrip antenna using MATLAB involved a detailed process aimed at 

accurately modeling the antenna's electromagnetic properties and evaluating its performance. The simulation process 

consisted of several key steps to ensure the design was optimized for the desired operating conditions, these steps are 

presented.  
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Figure 5 Flow chart of proposed methodology 

RECTANGULAR PATCH ANTENNA SIMULATION 

In this research, MATLAB was used as the primary simulation software to conduct a comprehensive study on rectangular 

patch microstrip antennas. MATLAB's advanced computational and simulation capabilities, including the implementation 

of numerical techniques such as the Finite Integration Technique (FIT) and the Transmission Line Matrix (TLM) method, 

made it an ideal choice for this high-frequency component analysis. 

Table 4.1: Antenna Dimension and Values 

Parameter Description Value 

εr Dielectric Constant 4.3 

Hs Substrate Thickness 1.6 mm 

Wg Substrate Width 76 mm 

Lg Substrate Length 58 mm 

Ht Copper-plate Thickness 0.035 mm 

gpf Gap Width 1 mm 

Wf Transmission Line Width 3.137 mm 

fi Transmission Line Length 8.85 mm 

W Patch Antenna Width 19-63 mm 

L Patch Antenna Length 10-54 mm 
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Figure 6 Rectangular Microstrip Patch Antenna 

Machine Learning Algorithm Implementation 

To make predictions based on the dataset generated from the antenna simulations, four advanced machine learning 

algorithms were employed: Decision Tree, Random Forest, Support Vector Regression (SVR), and Artificial Neural 

Networks (ANN). These algorithms were specifically chosen for their robust capability to handle regression tasks, which 

are essential for predicting numerical values. Given that the desired output involves predicting continuous numerical values, 

regression methods are the most appropriate for this purpose. Furthermore, these algorithms are proficient in handling non-

linear data, which is a common characteristic in complex engineering problems such as antenna performance prediction. 

 

Figure 7 Machine learning algorithm implementation flowchart 
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Optimizers 

Stochastic Gradient Descent (SGD) 

SGD is a simple yet powerful optimizer that updates the model parameters using the gradient of the loss function with 

respect to each training example. It iteratively adjusts the parameters in the direction that minimally reduces the error, one 

data point at a time. This makes SGD particularly efficient for large datasets, although it can be noisy and may require 

careful tuning of the learning rate. 

Adadelta 

Adadelta is an extension of SGD that adapts the learning rate dynamically. Unlike SGD, which updates parameters in a 

single time step, Adadelta uses a moving window of gradient updates to calculate more robust step sizes. This adaptation 

overcomes the need to set a learning rate manually and allows for automatic adjustment of the learning rate based on the 
historical gradients, making it effective in handling diverse datasets. 

Adam (Adaptive Moment Estimation) 

Adam combines the advantages of two other extensions of SGD: AdaGrad and RMSProp. Adam maintains a running 

average of both the gradients and the squared gradients. This helps in adapting the learning rate for each parameter 

separately, allowing for efficient training of deep neural networks. Adam's adaptability to various data characteristics and 

its robustness to sparse gradients make it a popular choice for many machine learning applications. 

AdaGrad 

AdaGrad is another variant of SGD that adapts the learning rate based on the frequency of updates for each parameter. 

Parameters that receive frequent updates have their learning rates reduced, whereas infrequent updates lead to larger 

learning rates. This adaptive nature helps in optimizing models with sparse data and can significantly improve convergence 

rates. 

Loss Function 

In regression tasks, the loss function quantifies the error between the predicted values and the actual values. A lower loss 

function value indicates better model performance. Several loss functions are used to measure this error, including Sum of 

Errors (SE), Sum of Absolute Error (SAE), Sum of Squared Error (SSE), and Mean Squared Error (MSE). 

Mean Squared Error (MSE) 

MSE is a commonly used loss function for regression tasks due to its simplicity and effectiveness. It measures the average 

of the squared differences between the predicted values and the actual values. MSE is particularly advantageous because 

it penalizes larger errors more heavily, providing a clear metric for model optimization. Additionally, as the dataset size 

increases, the aggregate error decreases, making MSE a reliable metric for evaluating model performance. 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1   

where: 

 n is the number of data points. 

 yi is the actual value for the iii-th data point. 

 𝑦𝑖̂ is the predicted value for the iii-th data point. 

The MSE value provides a single scalar that represents the average squared error of the predictions, making it easy to 

interpret the model's performance. 

 

V. RESULT AND DISCUSSION 

In this chapter, the Mean Squared Error (MSE) results for each of the four predictive algorithms—Decision Tree, Random 

Forest, Support Vector Regression (SVR), and Artificial Neural Network (ANN)—are presented. The MSE is a crucial 

performance metric that assesses the accuracy of these algorithms by measuring the average squared difference between 

their predicted values and the actual values obtained from the simulation data. To compute the MSE, the predicted values 

generated by each algorithm are compared against the corresponding actual values from the simulation. The differences 

between these values are squared to ensure that all differences are positive and to emphasize larger errors more than smaller 

ones. The squared differences are then averaged across all data points to produce the MSE for each algorithm. 

The MSE serves as a valuable indicator of each algorithm's performance. A lower MSE signifies that the predictions are 

closer to the actual values, indicating higher accuracy and effectiveness of the model. In contrast, a higher MSE suggests 
greater discrepancies between the predicted and actual values, reflecting lower predictive accuracy. By comparing the MSE 
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results across the Decision Tree, Random Forest, SVR, and ANN algorithms, we can determine which algorithm performs 

best in terms of prediction accuracy. 

A Decision Tree Mean Squared Error Analysis 

In the Decision Tree algorithm, the random state parameter plays a crucial role in determining the reproducibility and 

stability of the model's predictions. By setting different random state values, we can observe variations in the model's 

performance, as shown in Fig. 5.1, which displays the Mean Squared Error (MSE) values for a range of random state 

settings. 

The plot reveals a fluctuating pattern in MSE as the random state changes. The MSE values oscillate between approximately 

0.04460 and 0.04485. Several local minima and maxima are observed throughout the range. Notably, the MSE reaches its 

lowest points at random states around 5, 15, 25, 35, and 45. Conversely, the MSE peaks are observed at random states 

around 2, 12, 22, 32, and 42. 

This fluctuation suggests that the random state parameter significantly influences the model's performance, with some 

values resulting in more accurate predictions (lower MSE) and others leading to less accurate predictions (higher MSE). 

The variability indicates the sensitivity of the Decision Tree algorithm to the randomness introduced during model training 

and data splitting. 

 

Figure 8 Decision tree for MSE 

Beyond a random state of 20, the MSE values fluctuate, reflecting the inherent variability introduced by the random state. 

These fluctuations occur because the random state parameter influences how the data is split into training and testing sets 

and how the decision tree is constructed. Small changes in the random state can lead to different splits and tree structures, 

resulting in varying levels of prediction accuracy. Interestingly, the MSE reaches its lowest value when the random state 
is set to 50, suggesting that this specific configuration provides the most accurate predictions for the given data. The 

fluctuating results highlight the sensitivity of the Decision Tree algorithm to the random state parameter, emphasizing the 

importance of careful tuning and selection of this parameter to achieve optimal model performance. 

B. Random Forest MSE Result 

The Mean Squared Error (MSE) results for the Random Forest regression algorithm, as the number of estimators (decision 

trees) varies from 1 to 50. The x-axis represents the number of estimators, while the y-axis shows the corresponding MSE 

values. The graph in Fig. 5.2 shows a clear trend of decreasing MSE as the number of estimators increases from 1 to around 

15. Initially, the MSE starts at approximately 0.035 and drops sharply to around 0.029. This decline indicates that adding 

more estimators improves the model's accuracy, likely due to the increased diversity and ensemble effect of combining 

multiple decision trees. 
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Figure 9 Mean Square Error for Random Forest 

After reaching this minimum MSE around 15 estimators, the MSE values remain relatively stable, fluctuating slightly 

around the 0.029 mark. There is a minor increase in MSE as the number of estimators reaches 50, suggesting a possible 

overfitting or diminishing returns in model performance improvement. This stability indicates that beyond a certain point, 

adding more estimators does not significantly enhance the model's predictive accuracy. 

The different MSE results for varying numbers of estimators highlight the inherent nature of the Random Forest regression 

algorithm. In Random Forests, each estimator (or decision tree) acts as an independent sampler of the dataset, creating a 
diverse set of models that contribute to the final prediction. This diversity is generally beneficial up to a point, beyond 

which the addition of more estimator’s yields diminishing returns or even slight performance degradation due to potential 

overfitting. 

C. Result for MSE in Support Vector Regression 

Mean Squared Error (MSE) results for various configurations of the Support Vector Regression (SVR) model are presented 

in Table 5.1, focusing on different values of the hyperparameters Epsilon and Gamma. 

Epsilon: This parameter defines the margin of tolerance where no penalty is given to errors. In simpler terms, it's the 

threshold within which the errors are ignored when fitting the model. Smaller values of Epsilon allow the model to be more 

sensitive to small errors, potentially capturing more details in the data but also risking overfitting. 

Gamma: This parameter defines how far the influence of a single training example reaches, with low values meaning 'far' 

and high values meaning 'close'. In other words, Gamma determines the weight of each data point on the decision boundary. 
Higher values of Gamma can lead to a model that fits the training data more closely, but it can also increase the risk of 

overfitting. 

Table 5.1: Support Vector Regression: MSE Results for Different Epsilon and Gamma Values 
 

Epsilon Gamma MSE 

0 0.01 0.0001 0.023610 

1 0.01 0.0010 0.026248 

2 0.01 0.0100 0.028902 

3 0.01 0.1000 0.043129 

4 0.01 1.0000 0.022314 

5 0.10 0.0001 0.022606 

6 0.10 0.0010 0.023468 

7 0.10 0.0100 0.026289 
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8 0.10 0.1000 0.031320 

9 0.10 1.0000 0.022131 

10 1.00 0.0001 0.021970 

11 1.00 0.0010 0.021970 

12 1.00 0.0100 0.021970 

13 1.00 0.1000 0.021970 

14 1.00 1.0000 0.021970 

The table shows the MSE values for each combination of Epsilon and Gamma, indicating how well each configuration 

performs in terms of prediction accuracy. For example, with Epsilon set to 0.01 and Gamma set to 0.0001, the MSE is 

0.023610. As Gamma increases to 1.0000 with the same Epsilon, the MSE decreases to 0.022314, suggesting that the 

model's accuracy improves with a higher Gamma in this instance. 

Across all rows, a trend can be observed: as Epsilon increases from 0.01 to 1.00, the MSE generally decreases, especially 

when Gamma is fixed at a lower value. The lowest MSE observed is 0.021970, occurring consistently when Epsilon is 

1.00, regardless of the Gamma value. This consistency indicates that the model achieves optimal performance under these 

settings, highlighting the importance of selecting appropriate hyperparameter values. 

D. Artificial Neural Networks: MSE Result Analysis 

The graph given in Fig. 5.3 illustrates the relationship between the number of hidden layers in an ANN and the 
corresponding Mean Squared Error (MSE) values. The x-axis represents the number of hidden layers, while the y-axis 

shows the MSE values. 

One Hidden Layer: The MSE starts at around 1.045. This value represents the model's prediction error with a simple 

architecture consisting of only one hidden layer. 

Two Hidden Layers: As the number of hidden layers increases to two, the MSE decreases significantly to the lowest value 

observed in the graph, approximately 1.030. This indicates that adding a second hidden layer improves the model's ability 

to fit the data, reducing the prediction error. 

Three Hidden Layers: However, when a third hidden layer is introduced, the MSE rises sharply to around 1.050, suggesting 

that adding this layer does not necessarily improve the model's performance and might lead to overfitting or increased 

complexity without significant gains in accuracy. 

Four Hidden Layers: The MSE continues to increase slightly with four hidden layers, reaching the highest value in the 

graph, approximately 1.052. This further increase in MSE indicates that the model's complexity might be growing 

excessively, leading to poorer generalization on the test data. 

Five Hidden Layers: Finally, with five hidden layers, the MSE drops again to around 1.040, suggesting a potential 

improvement in performance. However, this MSE is still higher than the minimum observed with two hidden layers, 

indicating that the optimal number of hidden layers might be less than five. 
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Figure 10 MSE by Number of Hidden Layers in ANN 

The fluctuations in MSE values across different numbers of hidden layers highlight the importance of carefully tuning the 

ANN architecture. While adding more layers can potentially increase the model's capacity to learn complex patterns, it can 

also lead to overfitting if the model becomes too complex relative to the available data. 

In practice, selecting the right number of hidden layers involves balancing the trade-off between model complexity and 

prediction accuracy. The graph suggests that in this particular case, the optimal architecture may include around two hidden 

layers, as this configuration resulted in the lowest MSE. 

E. Comparative Analysis  

In predictive modeling, evaluating the performance of different algorithms is crucial for selecting the best approach for a 

given problem. Mean Squared Error (MSE) is a common metric used to assess the accuracy of a model's predictions, with 

lower values indicating better performance. The following table compares the MSE of various predictive algorithms—
Decision Tree, Random Forest, Support Vector Regression (SVR), and Artificial Neural Networks (ANN)—under different 

conditions, contrasting the base work with the proposed improvements. This comparison provides insights into the 

effectiveness of each technique and highlights the potential benefits of optimizing algorithm parameters. 

Table 5.2: Comaprative Analysis of MSE Values for all Algorithms 

Techniques Condition Base Work 

MSE 

Proposed Work 

MSE 

Decision Tree Random State, 50 5.556 0.44 

Random Forest Estimators; 15 3.45 0.29 

SVR Gamma-0.0001; 

epsilon -1 

5.317 0.25 

ANN Hidden layers 4; 

Optimizer ADAM 

4.319 1.05 
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Figure 11 Comparative analysis of MSE Values 

The Mean Squared Error (MSE) for different predictive algorithms under specified conditions, comparing base and 

proposed configurations. For the Decision Tree algorithm, optimizing the random state from 50 results in a significant drop 

in MSE from 5.556 to 0.44. Similarly, for the Random Forest with 15 estimators, the MSE improves from 3.45 to 0.29 with 

the proposed changes. Support Vector Regression (SVR) benefits from reduced gamma and epsilon values, decreasing 

MSE from 5.317 to 0.25. Conversely, in the case of Artificial Neural Networks (ANN) with 4 hidden layers and the ADAM 

optimizer, the proposed adjustments lead to an increase in MSE from 4.319 to 1.05, suggesting a potential deterioration in 

model performance with the new settings. 

 

VI. CONCLUSION 

Machine learning techniques have significantly advanced the optimization of antenna design. The study assessed Decision 

Tree, Random Forest, Support Vector Regression, and Artificial Neural Networks for their predictive accuracy. Results 

show that Random Forest and SVR models deliver the best performance, with lower Mean Squared Error (MSE) values 

compared to Decision Tree and ANN models. The ANN model exhibited reduced performance with specific optimizations, 

indicating areas for further improvement. Overall, machine learning provides a valuable tool for refining antenna design, 

and ongoing research may enhance these models for even greater precision and efficiency. 
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